
Algebra univers. 48 (2002) 399–411
0002-5240/02/040399 – 13
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A Cantor-Bernstein type theorem for effect algebras

Gejza Jenča

Abstract. We prove that if E1 and E2 are σ-complete effect algebras such that E1 is a
factor of E2 and E2 is a factor of E1, then E1 and E2 are isomorphic.

1. Introduction

An effect algebra (see [6], [18] and [7]) is a partial algebra (E;⊕, 0, 1) with a
binary partial operation ⊕ and two nullary operations 0, 1 satisfying the following
conditions.

(E1) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a.
(E2) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are defined

and (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that a ⊕ a′ = 1.
(E4) If a ⊕ 1 exists, then a = 0.

Effect algebras were introduced by Foulis and Bennett in their paper [6]. In-
dependently, Chovanec and Kôpka introduced an essentially equivalent structure
called D-poset (see [18]). Another equivalent structure was introduced by Giuntini
and Greuling in [7].

One can construct examples of effect algebras from any partially ordered abelian
group (G,≤) in the following way: Choose any positive u ∈ G; then, for 0 ≤ a, b ≤
u, define a ⊕ b iff a + b ≤ u and then put a ⊕ b = a + b. With such a partial
operation ⊕, the interval [0, u] becomes an effect algebra ([0, u],⊕, 0, u). Effect
algebras which arise from partially ordered abelian groups in this way are called
interval effect algebras, see [2].

Example 1.1. Let (R,≤) be the partially ordered additive group of real numbers,
where ≤ is the usual partial order. Restrict + to the interval [0, 1] in the way
indicated in the above paragraph; then ([0, 1],⊕, 0, 1) is an effect algebra.
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400 G. Jenča Algebra univers.

Another prominent example of an interval effect algebra is the standard effect
algebra consisting of all bounded self-adjoint operators on a Hilbert space between
0 and the identity operator.

Example 1.2. Let E be the four-element set {0, a, b, 1}. Define a⊕a = b⊕b = 0⊕1
and ∀x ∈ E : 0 ⊕ x = x ⊕ 0 = x; in all other cases the partial sum is undefined.
Then (E,⊕, 0, 1) is an effect algebra.

In an effect algebra E, we write a ≤ b iff there is c ∈ E such that a⊕c = b. Since
every effect algebra is cancellative, ≤ is a partial order on E. In this partial order, 0
is the least and 1 is the greatest element of E. Moreover, it is possible to introduce
a new partial operation �; b� a is defined iff a ≤ b and then a⊕ (b� a) = b. It can
be proved that a ⊕ b is defined iff a ≤ b′ iff b ≤ a′. Therefore, it is usual to denote
the domain of ⊕ by ⊥.

If E is an effect algebra such that (E,≤) is a lattice, we say that E is lattice
ordered. An element a of an effect algebra is called an atom iff a is minimal with
respect to the property 0 < a.

Example 1.3. The smallest example of a non-lattice ordered effect algebra is a
six-element effect algebra with two atoms a, b satisfying a ⊕ b ⊕ b = a ⊕ a ⊕ a = 1.
Note that this equality defines E up to isomorphism.

Among lattice ordered effect algebras, there are two important subclasses, which
arise from quantum and fuzzy logic, respectively: orthomodular lattices and MV-
algebras.

Example 1.4. Let (L;∧,∨, ′ , 0, 1) be an orthomodular lattice. Write a⊕b = a∨b

iff a ≤ b′, otherwise let a ⊕ b be undefined. Then (L,⊕, 0, 1) is an effect algebra.
Effect algebras which are associated with orthomodular lattices in this way can be
characterized as lattice ordered effect algebras satisfying the implication

a ⊥ b =⇒ a ∧ b = 0.

Example 1.5. An MV-algebra (cf. [4], [19]), (M ;⊕,¬, 0), is a commutative semi-
group satisfying the identities x ⊕ 0 = x, ¬¬x = x, x ⊕ ¬0 = ¬0 and

x ⊕ ¬(x ⊕ ¬y) = y ⊕ ¬(y ⊕ ¬x).

There is a natural partial order in an MV-algebra, given by y ≤ x iff x = x ⊕
¬(x⊕¬y). For every MV-algebra (M ;⊕,¬, 0) can be considered as a effect algebra
(M ;⊕, 0,¬0), when we restrict the operation ⊕ to the domain ⊥= {(x, y) : x ≤ ¬y}.
Effect algebras which are associated with MV-algebras can be characterized as
lattice ordered effect algebras satisfying the implication

a ∧ b = 0 =⇒ a ⊥ b.

(Cf. [1])
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As proved by Riečanová in [21], every lattice ordered effect algebra is a union of
maximal sub-effect algebras which are MV-algebras. These are called blocks. For
example, the lattice-ordered effect algebra in Example 1.2 contains two blocks; each
of them is a three-element MV-algebra. In the case of of orthomodular lattices,
the blocks are maximal Boolean subalgebras. This result shows that the lattice
ordered effect algebras are a very natural generalization of orthomodular lattices.
In [15], some of the Riečanová’s results were generalized for a particular non-lattice
ordered class of effect algebras, called homogeneous algebras. There is another
natural connection with the class of orthomodular lattices. Call an element of an
effect algebra sharp iff a∧ a′ = 0. The set of all sharp elements in a lattice-ordered
effect algebra such that a ∧ a′ = 0 is an orthomodular lattice. This was proved in
[16].

A finite family of elements A = (a1, . . . , an) of an effect algebra is called or-
thogonal iff ⊕A = a1 ⊕ · · · ⊕ an is defined. An infinite family A = (ak)k∈M is
called orthogonal iff all finite subfamilies of A are orthogonal. An orthogonal fam-
ily A = (ak)k∈M is called summable iff

⊕
A =

∨
{ai1 ⊕ · · · ⊕ ain : {i1, . . . , in} ⊆ M}

exists. An effect algebra E is called σ-complete iff every countable orthogonal family
of elements of E is summable. Of course, every finite effect algebra is σ-complete.
It is easy to see that 1.1 is a σ-complete effect algebra. The interval effect algebra
of polynomial functions [0, 1] → [0, 1] is not σ-complete. Later we shall prove that
a lattice ordered effect algebra E is σ-complete iff (E,≤) is a σ-complete lattice.

Let E1, E2 be effect algebras. Define the ⊥ and ⊕ on E1 × E2 as follows: for
a1, b1 ∈ E1 and a2, b2 ∈ E2 we have (a1, a2) ⊥ (b1, b2) ⇔ a1 ⊥ b1 and a2 ⊥ b2, and
then (a1, a2)⊕(b1, b2) = (a1⊕b1, a2⊕b2). Then we say that (E1×E2,⊕, (0, 0), (1, 1))
is the direct product of E1, E2. It is easy to see that the direct product of effect
algebras is an effect algebra.

Let us now state the main result of the present paper.

Theorem 1.6. Let E1, E2 be σ-complete effect algebras. Suppose that there exist
effect algebras F, G such that

E1
∼= E2 × F

E2
∼= E1 × G.

Then E1
∼= E2.

The assumption that E1 and E2 are σ-complete cannot be dropped, since (as
proved by Hanf in [12]) there is a Boolean algebra A such that A×A×A ∼= A, but
A×A �∼= A. Then we may put E1 = A and E2 = A×A to obtain a counterexample.
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Recently, two more special versions of the main Theorem of [13] appeared. In
[23], it was proved that A1 and A2 can be σ-complete orthomodular lattices. In
[22], Theorem 4.1, it was proved that A1 and A2 can be σ-complete MV -algebras.

On the International Conference on Fuzzy Set Theory an its Application (Lip-
tovký Ján 2000), A. De Simone, D. Mundici, P. Pták and M. Navara raised the
question, whether Theorem 1.6 holds in a subclass of effect algebras.

Section 2 contains basic definitions and relationships concerning effect algebras
and some more general structures. We characterize the class of partial abelian
monoids which are partially ordered in their algebraic preorder. In section 3, we
focus on the class of σ-complete effect algebras and weak congruences on them.
We prove that, for a σ-complete effect algebra E and a countably additive weak
congruence ∼ satisfying a certain condition, the algebraic preorder of the quotient
partial abelian monoid E/∼ is a partial order. In section 4, we prove that the
center (see [9]) of a σ-complete effect algebra is a σ-complete Boolean algebra. We
apply a result from section 2 to prove that the center of a σ-complete effect algebra
modulo the isomorphism of central ideals forms a partial abelian monoid which is
partially ordered. Theorem 1.6 is then a simple consequence of the latter result.

2. Effect algebras and other partial abelian monoids

An effect algebra need not be lattice ordered. However, as proved in [9], the
following relationship between ∧, ∨ and ⊕ holds: if a ∨ b exists and a ⊥ b, then
a ∧ b exists and

a ⊕ b = (a ∧ b) ⊕ (a ∨ b).

Moreover, it is easy to check that, for every subset B of an effect algebra such
that

∨
B exists and for every x ≥ B,

x � (
∨

B) =
∧

{x � b : b ∈ B}.
Let E1, E2 be effect algebras. A map φ : E1 �→ E2 is called a homomorphism iff

it satisfies the following condition.

(H1) φ(1) = 1 and if a ⊥ b, then φ(a) ⊥ φ(b) and φ(a ⊕ b) = φ(a) ⊕ φ(b).

A homomorphism φ : E1 �→ E2 of effect algebras is called full iff the following
condition is satisfied.

(H2) If φ(a) ⊥ φ(b), then there exist a1, b1 ∈ E1 such that a1 ⊥ b1, φ(a) = φ(a1)
and φ(b) = φ(b1).

A bijective, full homomorphism is called an isomorphism.
Let E1 be an effect algebra. A subset E2 ⊆ E1 is a subeffect algebra of E1 iff

0, 1 ∈ E2, E2 is closed under the ′ operation, and a, b ∈ E2 with a ⊥ b =⇒ a⊕ b ∈
E2.
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Another possibility of creating a substructure of an effect algebra E is to restrict
⊕ to an interval

[0, a] = {x ∈ E : 0 ≤ x ≤ a},
where a ∈ E, so that ([0, a],⊕) becomes a relative subalgebra (cf. e.g. [8]) of the
partial algebra (E,⊕). We can then consider [0, a] as an effect algebra, letting a

act as the unit element. In what follows, we denote such effect algebras by [0, a]E .
Let E be an effect algebra. A subset I of E is called an ideal of E iff the following

condition is satisfied.
x, y ∈ I and x ⊥ y ⇔ x ⊕ y ∈ I

A partial abelian monoid is a partial algebra (P,⊕, 0) satisfying conditions (E1)
and (E2), with a neutral element 0. A partial abelian monoid P is said to be
positive iff P satisfies the following condition.

If a ⊕ b = 0, then a = 0

It is possible to define ≤ for a general partial abelian monoid exactly the same way
as for effect algebras. However, the relation ≤ need not be a partial order.

Proposition 1. Let P be a partial abelian monoid. Then ≤ is a partial order on
P iff for all a, b, c ∈ P the following condition is satisfied.

a = a ⊕ b ⊕ c =⇒ a = a ⊕ b

Proof. For every partial abelian monoid, ≤ is a preorder, i.e., a reflexive and tran-
sitive relation. Thus, ≤ is a partial order iff ≤ is antisymmetric.

Assume that ≤ is a partial order and let a = a ⊕ b ⊕ c. Since a ≤ a ⊕ b and
a ⊕ b ≤ a, a = a ⊕ b.

For the ‘if’ part, let a ≤ d and d ≤ a. There are b, c ∈ P such that a ⊕ b = d

and d⊕ c = a. Thus, a⊕ b⊕ c = a and, by assumption, this implies that a⊕ b = a.
Therefore, d = a and we see that ≤ is a partial order on P . �

Corollary 2.1. Let P be a partial abelian monoid such that ≤ is a partial order
on P . Then P is positive.

Proof. Let x, y ∈ P , x⊕ y = 0. Then x⊕ y ⊕ x = x. By Proposition 1, this implies
that x ⊕ y = x. Thus, by assumption, x = 0. �

Obviously, every cancellative and positive partial abelian monoid satisfies the
conditions of Proposition 1.

3. Weak congruences and σ-complete effect algebras

Let E be an effect algebra. A relation ∼ on E is a weak congruence iff the
following conditions are satisfied.
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(C1) ∼ is an equivalence relation.
(C2) If a1 ∼ a2, b1 ∼ b2, a1 ⊥ b1, a2 ⊥ b2, then a1 ⊕ b1 ∼ a2 ⊕ b2.

If E is an effect algebra and ∼ is a weak congruence on E, the quotient E/∼
(⊕ is defined on E/∼ in an obvious way) need not to be a partial abelian monoid,
since the associativity condition may fail (cf. [11]). This fact motivates the study of
sufficient conditions for a weak congruence to preserve associativity. The following
condition was considered in [5].

(C5) If b ⊥ c and a ∼ b⊕ c, then there are b1, c1 such that b1 ∼ b, c1 ∼ c, b1 ⊥ c1

and a = b1 ⊕ c1.

In [5], it was proved that for a partial abelian monoid P and a weak congruence ∼,
satisfying (C5), the quotient P/∼ is again a partial abelian monoid. Moreover, it is
easy to prove that the eventual positivity of P is preserved for such ∼. However, for
an effect algebra E, the (C5) property of ∼ does not guarantee that the ′ operation
is preserved by ∼ or, equivalently, that E/∼ is an effect algebra. We refer the
interested reader to [20] and [11] for further details concerning congruences on
effect algebras and partial abelian monoids.

Example 3.1. Let 2N be the effect algebra associated with the Boolean algebra of
all subsets of N. If a, b are two subsets of N, put a ∼ b iff a and b are of the same
cardinality. Then ∼ is a weak congruence satisfying (C5) and 2N/∼ is isomorphic
to the partial abelian monoid (N ∪ {∞}; +, 0).

Example 3.2. Let A be an involutive ring with unit, in which x∗x + y∗y = 0
implies x = y = 0. Let P (A) be the set of all projections in A. For e, f ∈ P (A),
write e⊕f = e+f iff ef = 0, otherwise let e⊕f be undefined. Then (P (A);⊕, 0, 1)
is an effect algebra. For e, f in P (A), write e ∼ f iff there is w ∈ A such that
e = w∗w and f = ww∗. Then ∼ is a weak congruence on P (A) and ∼ satisfies
(C5).

Proposition 2. Let E be an effect algebra. Let ∼ be a weak congruence satisfying
(C5). Then ≤ is a partial order on E/∼ iff for all a, b, c ∈ E the following condition
is satisfied.

a ∼ a ⊕ b ⊕ c =⇒ a ∼ a ⊕ b (1)

Proof. By Proposition 1, ≤ is a partial order on E/∼ iff

[a]∼ = [a]∼ ⊕ [b]∼ ⊕ [c]∼ =⇒ [a]∼ = [a]∼ ⊕ [b]∼ (2)

is satisfied. Thus, it suffices to prove that (1) and (2) are equivalent.
Assume that (2) is satisfied. Let a, b, c ∈ P be such that a ∼ a⊕b⊕c. Obviously,

[a]∼ = [a]∼ ⊕ [b]∼ ⊕ [c]∼. By (2), this implies [a]∼ = [a]∼ ⊕ [b]∼. By assumption,
a ⊥ b so we can write a ∼ a ⊕ b.
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On the other hand, assume that (1) is satisfied. Let a, b, c ∈ P be such that
[a]∼ = [a]∼ ⊕ [b]∼ ⊕ [c]∼. Since [a]∼ ⊥ [b]∼, there are a1 ∼ a and b1 ∼ b such
that a1 ⊥ b1. Since [a1 ⊕ b1]∼ ⊥ [c]∼, there are c1 ∼ c and d ∼ a1 ⊕ b1, such
that c1 ⊥ d. Since ∼ satisfies (C5), d ∼ a1 ⊕ b1 implies that there are a2, b2 ∈ P

such that a2 ∼ a1, b2 ∼ b1 and d = a2 ⊕ b2. Thus, a2 ⊕ b2 ⊕ c1 ∼ a2. By (1),
this implies that a2 ⊕ b2 ∼ a2. Since [a]∼ = [a2]∼ and [b]∼ = [b2]∼, we see that
[a]∼ = [a]∼ ⊕ [b]∼. �

Let E be a σ-complete effect algebra. Let (ak)k∈N be an orthogonal family. It is
easy to check that, ⊕

k∈N

ak =
∨

k∈N

a1 ⊕ · · · ⊕ ak.

The following lemma gives a useful characterization of σ-complete effect algebras.
Although it was proved in [10], we include the proof here because we need to refer
to it in what follows.

Lemma 3.3. [10] Let E be an effect algebra. The following are equivalent:

(a) E is σ-complete.
(b) For each non-increasing sequence (ak)k∈N, ∧(ak)k∈N exists.
(c) For each non-decreasing sequence (ak)k∈N, ∨(ak)k∈N exists.
Proof.

(c)⇒(a): Let (bk)k∈N be an orthogonal family. For every k ∈ N, put ak =
b1 ⊕ · · · ⊕ bk. Evidently, ak is a non-decreasing sequence, so ∨(ak)k∈N exists and
equals

⊕
k∈N

bk.
(a)⇒(b): Let (ak)k∈N be a non-increasing sequence. For every k ∈ N, put

bk = ak � ak+1; (bk)k∈N is the difference sequence of (ak)k∈N. Evidently, (bk)k∈N is
an orthogonal sequence. Denote b =

⊕
k∈N

bk. We claim that a1�b =
∧

ai. Indeed,
for all k ∈ N we have ak = a1 � (b1 ⊕ · · · ⊕ bk−1) ≥ a1 � b. Thus, a1 � b is a lower
bound of (ak)k∈N. On the other hand, let c be a lower bound of (ak)k∈N. Then, for
all k ∈ N, c ≤ ak = a1� (b1⊕· · ·⊕ bk−1). This implies that a1� c ≥ b1⊕· · ·⊕ bk−1.
Therefore, a1 � c ≥ b which is equivalent to c ≤ a1 � b.

(b)⇒(c): This is a consequence of the equivalence a ≤ b iff b′ ≤ a′. �

Recall, that a lattice is called σ-complete iff every countable set of elements has
a supremum.

Corollary 3.4. Let (E;⊕, 0, 1) be a lattice-ordered effect algebra. E is σ-complete
as an effect algebra iff E is σ-complete as a lattice.

Proof. It is obvious that the σ-completeness of E as a lattice is equivalent to the
condition (b) of Lemma 3.3. �
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Thus, the class of σ-complete effect algebras includes effect algebras arising from
σ-complete MV-algebras and effect algebras arising from σ-complete orthomodular
lattices.

Let E be a σ-complete effect algebra, let ∼ be a weak congruence on E. Then
∼ is said to be countably additive iff the following condition is satisfied: for all
orthogonal families (ak)k∈N ⊆ E and (bk)k∈N ⊆ E such that, for all k ∈ N, ak ∼ bk

we have
⊕

k∈N
ak ∼ ⊕

k∈N
bk.

Proposition 3. Let E be a σ-complete effect algebra. Let ∼ be a countably additive
weak congruence satisfying (C5). Then ≤ is a partial order on E/∼.

Proof. Let a0, b0, c0 ∈ P be such that a0 ∼ a0⊕b0⊕c0. By Proposition 2, it suffices
to prove that a0 ∼ a0 ⊕ b0.

When we apply the (C5) property of ∼ twice, we immediately obtain that a0 ∼
a0⊕ b0⊕ c0 implies that there exist a1, b1, c1 ∈ P such that a1 ∼ a0, b1 ∼ b0, c1 ∼ c

and a0 = a1 ⊕ b1 ⊕ c1. Similarly, since a1 ∼ a1 ⊕ b1 ⊕ c1, there exist a2, b2, c2 ∈ P

such that a2 ∼ a1, b2 ∼ b1 and c2 ∼ c1.
This way, we can construct sequences (ak)k∈N, (bk)k∈N such that

a0 ⊕ b0 ≥ a0 ≥ a1 ⊕ b1 ≥ a1 ≥ a2 ⊕ b2 ≥ · · · (3)

Moreover, for all k ∈ N, ak ∼ a0 and bk ∼ b0. Since E is a σ-complete effect
algebra, the non-decreasing sequence (3) possesses an infimum, say f . (See Lemma
3.3.)

Consider the following sequences (dk)k∈N, (ek)k∈N:

d0 = (a0 ⊕ b0) � a0 ∼ b0

d1 = a0 � (a1 ⊕ b1) ∼ c0

d2 = (a1 ⊕ b1) � a1 ∼ b0

d3 = a1 � (a2 ⊕ b2) ∼ c0

...

e0 = d2

e1 = d1

e2 = d4

e3 = d3

...

Note that (dk)k∈N is the difference sequence of (3). Similarly, (ek)k∈N arises from
the difference sequence of the sequence

a0 ≥ a1 ⊕ b1 ≥ a1 ≥ a2 ⊕ b2 ≥ · · · (4)

by swapping the elements with indices 2k and 2k + 1, for k ∈ N.
Consider the proof of Lemma 3.3, part (a)⇒(b). We have

a0 ⊕ b0 =
⊕

k∈N

dk ⊕ f

a0 =
⊕

k∈N

ek ⊕ f
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Since for all k ∈ N ek ∼ dk and ∼ is countably additive, this implies that a0 ⊕ b0 ∼
a0. �

Without going into details, it is worth mentioning that, in view of Example
3.2, Proposition 3 implies that for every Rickart ∗-ring in which every countable
family of projections has a supremum, the set of equivalence classes of projections
under the relation ∼ is partially ordered. This was proved in [3] under the name
Schröder-Bernstein theorem. (See also [17].)

4. Central elements; main result

Let E be an effect algebra. Suppose that there is an isomorphism φ : E �→
E1 × E2. For every such φ, the elements φ−1(1, 0) and φ−1(0, 1) are called central
elements of E. We write C(E) for the set of all central elements of an effect
algebra E. It was proved in [9] that the set of all central elements forms a sub-
effect algebra of E, which is a Boolean algebra. Moreover, the joins and meets of
elements of C(E) exist in E and coincide with their joins and meets in C(E). If
a, b ∈ C(E) are orthogonal, we have a ∨ b = a⊕ b and a ∧ b = 0. For all a ∈ C(E),
the interval [0, a] is a ⊕-subalgebra and hence an ideal of E. These ideals are called
central ideals. By [5], a central ideal in an effect algebra E can be characterized as
an ideal I satisfying the following conditions.

• I = [0, a] for some a ∈ E.
• I is a Riesz ideal, i.e., if i ∈ I and i ≤ a ⊕ b, then there exist i1, i2 ∈ I, such

that i1 ≤ a, i2 ≤ b, i ≤ i1 ⊕ i2.

For every central element a, the map x �→ a ∧ x is a full homomorphism, which
maps E onto [0, a]E (cf. [14]).

Lemma 4.1. Let E be a σ-complete effect algebra. Let (ak)k∈N ⊆ E be a countable
orthogonal family of central elements. Let (xk)k∈N be a family of elements satisfying
xk ≤ ak, for all k ∈ N. Then

∨
k∈N

xk exists and equals
⊕

k∈N
xk.

Proof. Let M be a finite nonempty subset of N. Obviously, (xk)k∈M is an orthog-
onal family, so

⊕
k∈M xk exists. Observe that

E ∼= (
∏

k∈M

[0, ak]E) × [0, (a1 ⊕ · · · ⊕ ak)′]E .

Therefore,
⊕

k∈M xk =
∨

k∈M xk. This implies that

⊕(xk)k∈N =
∨

k∈N

x1 ⊕ · · · ⊕ xk =
∨

k∈N

x1 ∨ · · · ∨ xk =
∨

k∈N

xk.

�
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Proposition 4. Let E be a σ-complete effect algebra. Let (an)n∈N ⊆ C(E) be a
countable orthogonal family. Denote a =

⊕
n∈N

an. Then

[0, a]E ∼=
∏

n∈N

[0, an]E .

Moreover, a is central.

Proof. Let φ : [0, a]E �→ ∏
n∈N

[0, an]E be a map given by φ(x) = (x ∧ an)n∈N. We
will prove that φ is an isomorphism.

To prove that φ is onto, let (xk)k∈N ∈ ∏
n∈N

[0, an]E . Observe that (xk) is an
orthogonal family and put x =

⊕
n∈N

xn. We will prove that φ(x) = (xn)n∈N. We
see that

φ(x) = (x ∧ an)n∈N = ((
⊕

k∈N

xk) ∧ an)n∈N.

Fix any n ∈ N. By associativity of ⊕,

x ∧ an = (
⊕

k∈N

xk) ∧ an = (xn ⊕ (
⊕

k∈N\{n}
xk)) ∧ an.

Since the orthogonal family (xk)k∈N\{n} satisfies the conditions of Lemma 4.1,

(xn ⊕ (
⊕

k∈N\{n}
xk)) ∧ an = (xn ⊕ (

∨

k∈N\{n}
xk)) ∧ an

Since an is a central element,

(xn ⊕ (
∨

k∈N\{n}
xk)) ∧ an = (xn ∧ an) ⊕ ((

∨

k∈N\{n}
xk) ∧ an)

= xn ⊕ ((
∨

k∈N\{n}
xk) ∧ an)

Since, for all k ∈ N \ {n}, xk ∧ an = 0, we see that

an ∧ (
∨

k∈N\{n}
xk) = 0.

Thus, for all n ∈ N, (x ∧ an) = xn. Therefore, φ is onto.
To see that φ is one-to-one it suffices to prove that, for all x ∈ [0, a],

x =
⊕

n∈N

x ∧ an. (5)

Since
⊕

n∈N

x ∧ an =
∨

n∈N

(x ∧ a1) ⊕ · · · ⊕ (x ∧ an) =
∨

n∈N

x ∧ (a1 ⊕ · · · ⊕ an),


